If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16r^2+24r+8=0
a = 16; b = 24; c = +8;
Δ = b2-4ac
Δ = 242-4·16·8
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-8}{2*16}=\frac{-32}{32} =-1 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+8}{2*16}=\frac{-16}{32} =-1/2 $
| n/11-1=3 | | 8x4=4(2x+1) | | -3x+24=-51 | | 5+5x2=11 | | 8x4=4(2x+10 | | _(2-x)=3(6-x) | | b/26=39/9 | | -5u+3(u-8)=-8 | | 2x+4=6x8 | | 3·(y-5)+8=17 | | n/5+3=16 | | z+84=2z+69 | | 18s-92=3s+58 | | n/6+3=16 | | 37-21=4-x | | 10z=11z-3 | | w=4w-78 | | 5x-(6-3x)=18 | | 9p=8p+11 | | c=2c-1 | | 18+3x=x+7 | | 5a-14=4a-2 | | (5-3x)(3+4x)-(7+3x)(1-4x)=-64 | | 2n/3=32 | | 21x-12x²=79 | | (6p+3)(6p-7)-(7p-4)(-p-2)=0 | | 3s-17=6s-74 | | x=4x-1=13 | | 3b=b+30 | | 10x+4=12x+4 | | 13-4x=1x-x | | 4s+61=3s+65 |